Notes, summaries, assignments, exams, and problems for Physics

Sort by
Subject
Level

Fundamental Physics Definitions: Pressure, Heat, Fields

Classified in Physics

Written on in English with a size of 4.43 KB

Pressure Definition

Pressure: Indicates the relationship between an applied force and the area over which it acts. Reducing the area over which a force acts increases the pressure.

Hydrostatic Pressure

Hydrostatic pressure: It is the pressure exerted by a liquid at rest on the bottom and sides of its container due to gravity.

Atmospheric Pressure

Atmospheric Pressure: The pressure exerted by the Earth's atmosphere on all bodies within it.

Pascal's Principle

Pascal's Principle: Any pressure exerted on a confined fluid is transmitted undiminished to every portion of the fluid and the walls of its container.

Archimedes Principle

Archimedes Principle: Any body immersed in a fluid (liquid or gas) experiences an upward buoyant force equal in magnitude to... Continue reading "Fundamental Physics Definitions: Pressure, Heat, Fields" »

Fundamentals of Electrical Measurement and Generation

Classified in Physics

Written on in English with a size of 2.56 KB

Electrical Measurement Devices

A multimeter (often referred to as a "tester") is a versatile device used to measure various electrical quantities, including voltage (both AC and DC), current, and resistance.

Circuit Measurement Techniques

  • Measuring Voltage

    To measure voltage, the multimeter is connected in parallel across the two points where you want to determine the potential difference.

  • Measuring Current

    To measure current (intensity), the multimeter is connected in series, inserted directly into the circuit path where you want to know the current flow.

Understanding Polarity

When taking measurements in a live circuit, the device's pointer might move in the opposite direction or indicate negative values. This occurs if the multimeter's positive... Continue reading "Fundamentals of Electrical Measurement and Generation" »

Remote Sensing Technologies: Earth Observation Methods

Classified in Physics

Written on in English with a size of 3.56 KB

Main Mechanisms of Space Remote Sensing

Orbital Satellites for Earth Observation

Orbital satellites are fundamental to remote sensing and are primarily of two types:

  • Geostationary Orbit: Their movement is synchronized with the Earth's rotation, allowing them to always observe the same area. Due to their high altitude, they cover large regions, making them useful for studying global phenomena.
  • Polar Orbit: These satellites follow a circular orbit perpendicular to the Equator. They observe different areas with each pass, and being at a lower altitude, they cover a smaller area but with significantly more detail.

Multispectral Scanning Sensors

These are among the most common remote sensing instruments. They function as a scanner, meticulously tracking... Continue reading "Remote Sensing Technologies: Earth Observation Methods" »

Level Measurement Technologies: Electrical, Ultrasonic, Radar, Laser, Radiation

Classified in Physics

Written on in English with a size of 3.63 KB

Level Instruments Based on Electrical Characteristics

Conductive or Resistive Meter

This instrument consists of a probe with two electrodes. When the tip of the electrodes contacts a conductive liquid, it closes an electrical circuit. An amplifier unit then switches a meter contact.

Applications: These serve as level switches for conductive liquids in containers, provided the liquids are not excessively viscous or corrosive.

Ultrasonic Level Meter

This meter uses tunable, high-frequency sound waves that propagate through the gas phase until they collide with the liquid or solid surface.

Usage:

  • As an alarm level indicator: The frequency is damped when the liquid wets the sensors.
  • As a continuous level indicator: The emitted signal reflects off the liquid/
... Continue reading "Level Measurement Technologies: Electrical, Ultrasonic, Radar, Laser, Radiation" »

Physics Fundamentals: Understanding Forces and Tides

Classified in Physics

Written on in English with a size of 2.5 KB

Gravitational Force

Gravitational force is the fundamental force of attraction that exists between any two objects with mass. It causes the acceleration experienced by an object in the vicinity of a planet or satellite. Due to gravity, we feel weight. If an object is on a planet and not under the influence of other forces, it will experience an acceleration directed approximately towards the center of the planet. It is also known as gravity, gravitational pull, or gravitational interaction.

Weight

Weight is a force. The force exerted on bodies due to gravity is known as body weight. The weight of a body is proportional to its mass; i.e., the higher the body's mass, the greater its weight.

Spring Tide

These are the tides that occur during the full... Continue reading "Physics Fundamentals: Understanding Forces and Tides" »

Measurement Process Analysis: Principles and Techniques

Classified in Physics

Written on in English with a size of 2.93 KB

Measurement Process Analysis

Measurement, regardless of the magnitude, involves decisions on:

Measurand

The measurand is of fundamental importance to the choice of instrument.

Measure or Check

Measure determines the numerical value of a quantity, while verification confirms if a magnitude is within preset limits.

Geometric Characteristics of the Scale

1. Provision of Space to Measure

  • Exterior
  • Interior
  • Depth
  • Distance

2. Geometric Shape

2.1 Form of Isolated Elements
  • Straightness
  • Roundness
  • Form a line
  • Flatness
  • Cylindrical
  • Form a surface
2.2 Guidance of Isolated Elements
  • Parallelism
  • Perpendicularity
  • Angularity
2.3 Positioning of Associated Elements
  • Position of an element
  • Concentricity
  • Symmetry
  • Circular
  • Total

Logistical Difficulties

Part size, specimen weight, mobility, measuring... Continue reading "Measurement Process Analysis: Principles and Techniques" »

Fundamentals of RF Carriers, Modulation, and Antenna Technology

Classified in Physics

Written on in English with a size of 2.58 KB

Radio Frequency Carrier and Amplitude Modulation

The **RF carrier** is shown with its amplitude varying according to the frequency and amplitude of the modulating signal. In AM radio, the audio *sidebands* have a different bandwidth than the carrier. Regulations often limit the maximum audio frequency to 15 kHz.

Handling Variable Audio Signals

Question: What to do if the audio signal is variable?

Answer: Varying the amplitude of the carrier in time with the audio signal (Amplitude Modulation).

Antennas: Definition and Function

An antenna is a device designed for the purpose of transmitting or receiving electromagnetic waves in space. A transmitting antenna transforms electromagnetic wave voltages into radiated waves, and a receiving antenna performs... Continue reading "Fundamentals of RF Carriers, Modulation, and Antenna Technology" »

Magnetic Force: History, Properties, and Key Experiments

Classified in Physics

Written on in English with a size of 3.4 KB

Understanding Magnetic Force

The fundamental principle behind all magnetic phenomena is that a force arises between electric charges when they are in motion. This force is known as magnetic force.

Key Discoveries and Experiments

Oersted's Discovery (1820)

In 1820, Hans Christian Oersted accidentally discovered that an electric current could produce a magnetic field, deflecting the needle of a compass.

Faraday's Power Line (1831)

Michael Faraday's concept of the 'power line' explained the behavior of forces acting at a distance.

Properties of Magnetic Field Lines

The properties of magnetic field lines are:

  1. All magnetic field lines run from the north to the south magnetic pole.
  2. The magnetic field strength is directly proportional to the number of field
... Continue reading "Magnetic Force: History, Properties, and Key Experiments" »

Wave Velocity Dynamics: String Tension and Sound Propagation

Classified in Physics

Written on in English with a size of 4.39 KB

Standing Waves & Speed of Sound: Experimental Analysis

Purpose of the Experiment

  • To investigate the relationship between the frequency of vibration and tension in waves on a vibrating string.
  • To measure the speed of sound experimentally.

Part 1: Standing Waves on a Vibrating String

Procedure for Part 1

  • Vary the tension on the string by hanging different weights at its ends. Use 150g, 200g, and 250g.
  • Once a standing wave is achieved, record the following information in a table: mass, weight (tension) on the string, frequency, wavelength, wave speed, and the square root of the tension.
  • Relevant formulas: λ = 2L / n, f = 1 / T (where T is the period), v = λf, and v = √(T / μ).
  • Create a graph of wave speed (v) versus the square root of the tension
... Continue reading "Wave Velocity Dynamics: String Tension and Sound Propagation" »

Concept of education

Classified in Physics

Written on in English with a size of 3.15 KB

electric field: in the era before Faraday, the force between two charged particles was interpreted as a direct interaction and instantantanea including bone, an action at a distance where the space between the loads is intervenia.Este same concept was used to explain gravitational and magnetic interactions. At present, these interactions are implemented using the concept of field.
each electric charge changes the characteristics of the surrounding space, communicating certain properties that make up the electric field. the electric field acts as intermediary in the interaction between the two charges.
electric field strength: to determine the properties of electric field is used to positive charges (loads of evidence) to be so small that... Continue reading "Concept of education" »