Understanding Simple Linear Regression: R-squared, Slope, and Conditions

Classified in Mathematics

Written at on English with a size of 151.98 KB.

wG2Epbr3mU9sAAAAABJRU5ErkJggg==


AD_4nXeQBHhUnG9dRc88T7inrz7p91MURl16OZo1G1rgd1ALv2kip__yWn223Edtd6sxGOfcijhqAqsSLa6o1qR5vXKzQRCrGGUIjU0eFZ3KrA7AKt1fzP4nqyKlNluZIzxVVxLO5uAnjTVUPvM6EL_dv_RVItA?key=sPl0wRYNdDvyOslUfU3rFg

AD_4nXc_cqqsumcnMxmmm2StNVJtamAhEcGdUjS1J2ycomDokh5s3UZsFBSroEkDLGi9Q-2G_a06mmwHD4bzteEWyLmxmzkU683UOPKkfN5M6-h3Nsbpisi1DitR7zALjgoJHeMKgrR-Jc30QhUqs6dsv7UErtXI?key=sPl0wRYNdDvyOslUfU3rFg

--------------------------------  AD_4nXe31Ou12jmeUEBR8G9fMafGNU5SJOGNHTOPJOP0UAtibredTNw355BSja5Wv2VLPSVxvt__c58OejNUznouqLN-2lPm6D4VrESa2xZKV9H_HfHzfyxbcPB5lmCuByttEXoMB6iClVjHvbvj-uF3Yu44u7o?key=sPl0wRYNdDvyOslUfU3rFg 


AD_4nXfYTYgWRfY1gkMt1vq6AJHh_t7CknWBxnXSXX-6aAgdQ7_2fRBWzv-po5qWOKggX5eF1D8PPpTVfXOXTR1XgofI-IEdFo5psN4mf9jJpKdXfBW_k80JCTnuBYbNwN_si5lYUcbL9fyLK0tlGuBfJvxqxhj4?key=sPl0wRYNdDvyOslUfU3rFg 


  AD_4nXcbKKppRyyYS0d95VehYm6CzlKHkx0RfbpgC_Re80hcs7xGFhvNiFuVdPM60xK-ZijZaaSp2zqb3IkJVht_aicks81imginzIvW_AeYWZHtO-LG1egHX9WGNKB84AzY8n5g9E20mF6jecK8ea90cSDKIEg?key=sPl0wRYNdDvyOslUfU3rFg ---------------------------------------------------------- AD_4nXfjLx5HyOZ7ZqQvuTBR2v3aLiGjJmnRj25YCnKRnGVVKTfO0dLY3R6VSZZB-41QvNeHPefgbEkAS-28yfN6GfK0-2cubyFc0UKN-k6QBPNN9KQF4YEGwM-x6Yp3cXgjloMjmNM5LaGLTGNrem9dUcDl6VrD?key=sPl0wRYNdDvyOslUfU3rFg


Write an interpretation of r^2 using the template in the Activity 2.1 Readings. We will do this one as a class.

Template: The proportion of the variation in the Y variable that is explained by the SLR model with the X variable is r^2.

For slope : Template: As x var increases by 1 unit, we predict y var  will increase/dec  by ____  y var units.

For y-intercept: When x var = 0 units, we predict that the y var  will be ____ units..

For SLR: Error = epsilon = y - yhat = y - (betahat0 + betahat1x)

SSE = residual1^2 + res. 2^2 +…+ res.  n^2 AD_4nXdgexHFktdBh3CFf6Ipr3g0Dvmpby1nEeB2kf4m3BPlVZyVmpXy0M3wvv_abbUEw0FmvELgZ4sk8s6J4Iz5loc0vp-F8fhOq9FiXmgdgpWxRvt0Y4-osnlgACEA0r4voQ32JZKQDqgWqqZ8QAv1u5nrCAGl?key=sPl0wRYNdDvyOslUfU3rFg

Standard error of regression = Root MSE (in SAS language)

The text lists six conditions for simple linear regression. They are:

  •  Condition 1. Linearity – The relationship between X and Y follows a straight line.

  •  Condition 2. Zero Mean – The mean of the errors is 0.

  •  Condition 3. Uniform Spread – The variability in the errors does not change as X changes.

  •  Condition 4. Independence – The value of the error for one observation is not related to the value of the error for any other observation.

  •  Condition 5. Normality – The errors follow a normal distribution.

  • Condition 6. Randomness – The errors come from data collection done by random sampling or random assignment of individuals to treatments.


Write an interpretation of r^2 using the template in the Activity 2.1 Readings. We will do this one as a class.

Template: The proportion of the variation in the Y variable that is explained by the SLR model with the X variable is r^2.

For slope : Template: As x var increases by 1 unit, we predict y var  will increase/dec  by ____  y var units.

For y-intercept: When x var = 0 units, we predict that the y var  will be ____ units..

We are confidence level % confident that for population the mean Y variable when X variable = value of X will be between lower limit of C.I.  unit of Y variable to upper limit of C.I.  unit of Y variable

We predict that for confidence level % of population when X variable = value of X the Y variable will be between lower limit of P.I.  unit of Y variable to upper limit of P.I.  unit of Y variable.

Template: For population we have / do not have a statistically significant linear relationship between Y variable and X variable.

Entradas relacionadas: