Surface Albedo and Radiative Balance of the Climate System
Classified in Physics
Written on in English with a size of 5.44 KB
Surface Albedo and the Climate System
Albedo
Albedo is the ability of different surface types to reflect solar energy back into the atmosphere.
Radiation Balance
Radiation balance describes the energy flow converging in an area.
Key Threads:
- K: Solar radiation flux = S + D + K
- L: Terrestrial radiation flux = L↑ + L↓
- D: Sensible heat flux in the atmosphere
- H: Sensible heat flux in the soil
- C: Latent heat flux
Surface Radiative Balance
If Ts = 288 K (-15°C)
En = σT4 = 0.817 x 10-10 Ly min-1 K-4 (288 K)4
En = 0.562 Ly min-1 = 290 Kcal cm-2 yr-1
Since S = 1.94 Ly min-1, the total energy intercepting the surface is:
SπR2
The total energy per unit area incident (Q0) corresponding to 100% is:
Q0 = SπR2 / 4πR2 = S / 4
Q0 = 0.485 Ly min-1 = 250 Kcal cm-2 yr-1
Ideal Gas
An ideal gas consists of particles (molecules) in random motion. The total number of molecules is large, and the volume of individual molecules is negligible compared to the gas volume. No forces act on the molecules, and collisions are elastic with negligible duration.
Boyle's Law
For a given mass of gas at constant temperature, the volume it occupies is inversely proportional to the pressure:
P ∝ 1/V
Considering two states (initial and final), if the initial pressure is P1 and the volume is V1 at temperature T, and in the final state P2 = 2P1 at the same temperature T, the volume V2 is:
V2 = ½V1
Therefore, P2V2 = 2P1 * ½V1 = P1V1 = k, where k is a constant for a given mass of gas at a given temperature.
Gay-Lussac's Law
If pressure remains constant during heating, a gas undergoes expansion. The volume change follows the law:
V = V0(1 + αt)
Where α is the coefficient of expansion of gases at constant pressure.
For an initial temperature of 0°C at constant pressure, the value of α for any gas is:
α = 1/273.15 °C
Substituting this value, we get:
V/V0 = 1 + t/273.15 = (273.15 + t)/273.15 = T/T0
That is, V/V0 = T/T0, where T (K) = 273.15 + t (°C) and T0 = 273.15 K = 0°C.
Dalton's Law
In a mixture of gases, the total pressure exerted is equal to the sum of the partial pressures exerted by each gas:
P = P1 + P2 + ... + Pn = ΣPi
Heat
Heat = c * m * (Tf - Ti), where Q represents heat lost or absorbed, m is the body mass, and Tf and Ti are the final and initial temperatures, respectively.
Q will be positive if Tf > Ti and negative if Tf < Ti.
- Calorie: The amount of heat needed to raise the temperature of one gram of water from 14.5°C to 15.5°C.
- Kilocalorie: The amount of heat needed to raise the temperature of one kilogram of water from 14.5°C to 15.5°C. 1 kcal = 1000 cal.
- British Thermal Unit (BTU): The amount of heat needed to raise the temperature of one pound of water from 63°F to 64°F. 1 BTU = 252 cal.
The relationship between calorie and mechanical power is the Joule: 1 cal = 4186 joules.
Specific heat is the amount of heat per unit mass and temperature, or the heat required to raise the temperature of one unit mass of a substance by one degree:
C = ΔQ / ΔT
Specific heat at constant volume (Cv) is the amount of heat needed to change the temperature while keeping the volume constant:
Cv = (dQ/dT)v=constant
Specific heat at constant pressure (Cp) is the amount of heat needed to change the temperature while keeping the pressure constant:
Cp = (dQ/dT)p=constant
Laws of Thermodynamics
dQ = dU + PdV
Adiabatic Process
dU = -dW. During adiabatic expansion, work is done on the environment (positive), and this work is done at the expense of internal energy. Thus, dU and dT are negative, meaning the temperature decreases during adiabatic expansion.