Kinematics Formulas: Motion, Speed, and Acceleration
Classified in Physics
Written at on English with a size of 3.97 KB.
Kinematics Formulas
Position Vector
r = xi + yj
- x = r cos
- y = r sin
- r = √(x2 + y2)
- tan θ = y / x
Displacement
Δr = r - rinitial
Speed, Average Speed, Instantaneous Speed
- Average Speed: vav = Δr / Δt
- Instantaneous Speed: v = dr / dt
Average Acceleration, Instantaneous Acceleration
- Average Acceleration: aav = Δv / Δt
- Instantaneous Acceleration: a = dv / dt
Uniform Rectilinear Motion (MRU)
- v = Δx / Δt
- vmean = (v0 + v) / 2
- v = v0 + at
- x = x0 + vt
- x = x0 + v0t + (1/2)at2
- v2 - v02 = 2aΔx
- v2 = v02 ± 2as
Free Fall
- Velocity: v = gt
- Position (height fallen): y = (1/2)gt2
- Velocity (upward): v = -gt
- Position (height): y = y0 - (1/2)gt2
Upward Vertical Launch
- Velocity: v = v0 - gt
- Position (height): y = y0 + v0t - (1/2)gt2
- Time to reach maximum height: t = v0 / g
- Maximum height: ymax = v02 / (2g)
- Time of flight: tflight = 2v0 / g
Horizontal Launch
- Horizontal component (MRU): x = v0t
- Vertical component (MRU): y = y0 - (1/2)gt2
- Position: r = v0ti + (y0 - (1/2)gt2)j
- Velocity: v = v0i - gtj
- v = √(vx2 + vy2)
- Horizontal velocity: vx = v0
- Vertical velocity: vy = -gt
Parabolic Motion
- v0x = v0cos θ
- v0y = v0sin θ
- y = y0 + v0yt - (1/2)gt2
- Horizontal component: x = v0xt
- Vertical component: y = v0yt - (1/2)gt2
- Position: r = xi + yj
- Horizontal velocity: vx = v0x
- Vertical velocity: vy = v0y - gt
- Velocity: v = vxi + vyj
- Time to reach maximum range: t = 2v0y / g = 2v0sin θ / g
- Maximum range: xmax = v02sin(2θ) / g
- Time to reach maximum height: t = v0sin θ / g
- Maximum height: ymax = v02sin2θ / (2g)
Superposition of Uniform Motions
- Δr = Δxi + Δyj
- v = vxi + vyj
- x = vxt = v0xt
Uniform Circular Motion (MCU)
- ω = Δθ / Δt
- v = Δs / Δt
- Angular position: θ = θ0 ± ωt
- Period: T = t / number of turns = 1 / frequency
- Frequency: f = number of turns / t = 1 / T
- ω = 2π / T = 2πf
- Centripetal acceleration: ac = ω2r = (2π / T)2r
Uniformly Accelerated Circular Motion (MCUA)
- α = Δω / Δt
- Angular velocity: ω = ω0 + αt
- Angular position: θ = θ0 + ω0t + (1/2)αt2