Kinematics Formulas: Motion, Speed, and Acceleration

Classified in Physics

Written at on English with a size of 3.97 KB.

Kinematics Formulas

Position Vector

r = xi + yj

  • x = r cos
  • y = r sin
  • r = √(x2 + y2)
  • tan θ = y / x

Displacement

Δr = r - rinitial

Speed, Average Speed, Instantaneous Speed

  • Average Speed: vav = Δr / Δt
  • Instantaneous Speed: v = dr / dt

Average Acceleration, Instantaneous Acceleration

  • Average Acceleration: aav = Δv / Δt
  • Instantaneous Acceleration: a = dv / dt

Uniform Rectilinear Motion (MRU)

  • v = Δx / Δt
  • vmean = (v0 + v) / 2
  • v = v0 + at
  • x = x0 + vt
  • x = x0 + v0t + (1/2)at2
  • v2 - v02 = 2aΔx
  • v2 = v02 ± 2as

Free Fall

  • Velocity: v = gt
  • Position (height fallen): y = (1/2)gt2
  • Velocity (upward): v = -gt
  • Position (height): y = y0 - (1/2)gt2

Upward Vertical Launch

  • Velocity: v = v0 - gt
  • Position (height): y = y0 + v0t - (1/2)gt2
  • Time to reach maximum height: t = v0 / g
  • Maximum height: ymax = v02 / (2g)
  • Time of flight: tflight = 2v0 / g

Horizontal Launch

  • Horizontal component (MRU): x = v0t
  • Vertical component (MRU): y = y0 - (1/2)gt2
  • Position: r = v0ti + (y0 - (1/2)gt2)j
  • Velocity: v = v0i - gtj
  • v = √(vx2 + vy2)
  • Horizontal velocity: vx = v0
  • Vertical velocity: vy = -gt

Parabolic Motion

  • v0x = v0cos θ
  • v0y = v0sin θ
  • y = y0 + v0yt - (1/2)gt2
  • Horizontal component: x = v0xt
  • Vertical component: y = v0yt - (1/2)gt2
  • Position: r = xi + yj
  • Horizontal velocity: vx = v0x
  • Vertical velocity: vy = v0y - gt
  • Velocity: v = vxi + vyj
  • Time to reach maximum range: t = 2v0y / g = 2v0sin θ / g
  • Maximum range: xmax = v02sin(2θ) / g
  • Time to reach maximum height: t = v0sin θ / g
  • Maximum height: ymax = v02sin2θ / (2g)

Superposition of Uniform Motions

  • Δr = Δxi + Δyj
  • v = vxi + vyj
  • x = vxt = v0xt

Uniform Circular Motion (MCU)

  • ω = Δθ / Δt
  • v = Δs / Δt
  • Angular position: θ = θ0 ± ωt
  • Period: T = t / number of turns = 1 / frequency
  • Frequency: f = number of turns / t = 1 / T
  • ω = 2π / T = 2πf
  • Centripetal acceleration: ac = ω2r = (2π / T)2r

Uniformly Accelerated Circular Motion (MCUA)

  • α = Δω / Δt
  • Angular velocity: ω = ω0 + αt
  • Angular position: θ = θ0 + ω0t + (1/2)αt2

Entradas relacionadas: