Calculating Annuity Due and Sinking Fund Surplus

Posted by Anonymous and classified in Mathematics

Written on in English with a size of 6.81 KB

Calculating the Future Value of an Annuity Due

Step 1: Determine the Variables

The problem provides the following details:

  • Annual payment: Rs. 200. Therefore, the half-yearly payment (Pmt) is:
    wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
    Rs. 200 / 2 = Rs. 100
    Rs. 200 / 2 = Rs. 100
  • Annual interest rate (r): 4% or 0.04. Since the interest is compounded half-yearly, the interest rate per period (i) is:
    wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
    0.04 / 2 = 0.02
    0.04 / 2 = 0.02
  • Term: 20 years. Payments are made half-yearly, so the total number of periods (n) is:
    wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
    20 × 2 = 40
    20 × 2 = 40
  • The annuity type is an annuity due, meaning payments are made at the beginning of each period.

Step 2: Apply the Future Value Formula

The formula for the Future Value (FV) of an annuity due is given by:

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = Pmt × [((1 + i)^n - 1) / i] × (1 + i)
FV = Pmt × [((1 + i)^n - 1) / i] × (1 + i)

Substitute the values into the formula:

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 100 × [((1 + 0.02)^40 - 1) / 0.02] × (1 + 0.02)
FV = 100 × [((1 + 0.02)^40 - 1) / 0.02] × (1 + 0.02)

Step 3: Calculate the Future Value

First, calculate (1.02)^40:

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
(1.02)^40 ≈ 2.20804
(1.02)^40 ≈ 2.20804

Now, complete the calculation:

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 100 × [2.20804 - 1] / 0.02 × (1.02)
FV = 100 × [2.20804 - 1] / 0.02 × (1.02)
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 100 × (1.20804 / 0.02) × 1.02
FV = 100 × (1.20804 / 0.02) × 1.02
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 100 × 60.402 × 1.02
FV = 100 × 60.402 × 1.02
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 6040.2 × 1.02
FV = 6040.2 × 1.02
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV ≈ 6161.00
FV ≈ 6161.00

Answer: The amount of the annuity due is Rs. 6161.00.

Calculating Sinking Fund Surplus

Step 1: Calculate the Future Value of the Sinking Fund

The future value (FV) of an ordinary annuity is calculated using the formula:

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = PMT × [((1 + i)^n - 1) / i]
FV = PMT × [((1 + i)^n - 1) / i]

Where:

  • wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
    PMT = Annual payment (Rs. 5,000)
    PMT = Rs. 5,000
  • wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
    i = Interest rate per period (0.05)
    i = 0.05
  • wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
    n = Number of periods (10 years)
    n = 10

Plugging in the values:

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 5000 × [((1 + 0.05)^10 - 1) / 0.05]
FV = 5000 × [((1 + 0.05)^10 - 1) / 0.05]
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 5000 × [(1.05^10 - 1) / 0.05]
FV = 5000 × [(1.05^10 - 1) / 0.05]
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 5000 × [(1.62889462677 - 1) / 0.05]
FV = 5000 × [(1.62889462677 - 1) / 0.05]
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 5000 × (0.62889462677 / 0.05)
FV = 5000 × (0.62889462677 / 0.05)
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV = 5000 × 12.5778925354
FV = 5000 × 12.5778925354
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
FV ≈ Rs. 62,889.46
FV ≈ Rs. 62,889.46

Step 2: Calculate the Surplus

The surplus is the difference between the accumulated fund's future value and the debenture's redemption value.

wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==

Surplus = Future Value of Fund - Debenture Value
Surplus = Future Value of Fund - Debenture Value
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
Surplus = Rs. 62,889.46 - Rs. 60,000
Surplus = Rs. 62,889.46 - Rs. 60,000
wAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==
Surplus ≈ Rs. 2,889.46
Surplus ≈ Rs. 2,889.46

Answer: The surplus after redeeming the debenture will be Rs. 2,889.46.

Related entries: