BPSK and QPSK Modulation Techniques with Python
Classified in Computers
Written at on English with a size of 4.97 KB.
BPSK Signal Generation
This section demonstrates the generation of a Binary Phase Shift Keying (BPSK) signal using Python.
import numpy as np
import matplotlib.pyplot as plt
def bpsk_detect(modulated_signal, carrier):
return np.sign(modulated_signal * carrier)
message_frequency = 10
carrier_frequency = 20
sampling_frequency = 30 * carrier_frequency
t = np.arange(0, 4/carrier_frequency, 1/sampling_frequency)
message = np.sign(np.cos(2 * np.pi * message_frequency * t) + np.random.normal(scale = 0.01, size = len(t)))
carrier = np.cos(2 * np.pi * sampling_frequency/carrier_frequency * t)
modulated_signal = carrier * message
detected_message = bpsk_detect(modulated_signal, carrier)
plt.figure(figsize=(12, 8))
plt.subplot(4, 1, 1)
plt.plot(t, message)
plt.title('Message signal')
plt.subplot(4, 1, 2)
plt.plot(t, carrier)
plt.title('Carrier signal')
plt.subplot(4, 1, 3)
plt.plot(t, modulated_signal)
plt.title('Modulated signal')
plt.subplot(4, 1, 4)
plt.plot(t, detected_message)
plt.title('Detected message signal')
plt.tight_layout()
plt.show()
Monte Carlo Simulation for BPSK
This section implements a Monte Carlo simulation to evaluate the Bit Error Rate (BER) of BPSK modulation in an Additive White Gaussian Noise (AWGN) channel.
import numpy as np
import matplotlib.pyplot as plt
N = 5000000
EbNodB_range = range(0, 15)
ber = []
for EbNodB in EbNodB_range:
EbNo = 10.0**(EbNodB/10.0) # Convert dB to Linear
# BPSK modulation
x = 2 * (np.random.rand(N) >= 0.5) - 1 # Random NRZ message
# AWGN channel
noise_std = 1/np.sqrt(2*EbNo)
y = x + noise_std * np.random.randn(N) # Adding noise to message
# Demodulation and error counting
y_d = 2 * (y >= 0) - 1 # Received signal
errors = np.sum(x != y_d)
print(errors)
# Calculate Bit Error Rate (BER) and store
ber.append(1.0 * errors / N)
# Plotting
plt.semilogy(EbNodB_range, ber, 'bo-')
plt.xlabel('Eb/N0 (dB)')
plt.ylabel('Bit Error Rate (BER)')
plt.grid(True)
plt.title('BPSK Modulation with AWGN Channel')
plt.show()
QPSK Signal Generation
This section demonstrates the generation of a Quadrature Phase Shift Keying (QPSK) signal using Python.
import numpy as np
import matplotlib.pyplot as plt
def cosineWave(f, overSamplingRate, nCycles, phase):
fs = overSamplingRate * f
t = np.arange(0, nCycles * 1/f, 1/fs)
g = np.cos(2 * np.pi * f * t + phase)
return list(g)
fm = 10
fc = 30
overSamplingRate = 20
fs = overSamplingRate * fc
x = np.random.rand(30) >= 0.5 # True or false
str_x = [str(int(i)) for i in x] # Boolean to string conversion via integer conversion
x = "".join(str_x) # The bit stream
print("Message string: {}".format(x))
message = [x[2*i : 2*(i+1)] for i in range(int(len(x)/2))] # Half the length of the string x.
print("Message string grouped as combinations of 2 bits each: {}".format(message))
mod_00 = cosineWave(fc, overSamplingRate, fc/fm, np.pi/6)
mod_01 = cosineWave(fc, overSamplingRate, fc/fm, np.pi/3)
mod_10 = cosineWave(fc, overSamplingRate, fc/fm, -np.pi/6)
mod_11 = cosineWave(fc, overSamplingRate, fc/fm, -np.pi/3)
modulated_signal = []
for i in message:
if i == '00':
modulated_signal += mod_00
if i == '01':
modulated_signal += mod_01
if i == '10':
modulated_signal += mod_10
if i == '11':
modulated_signal += mod_11
t = np.arange(0, (len(x)/2) * 1/fm, 1/fs)
print(len(t), len(modulated_signal))
plt.figure(figsize=(28, 6))
plt.plot(t, modulated_signal)
plt.xlabel("Time")
plt.ylabel("Amplitude")
plt.title("Modulated signal")
plt.grid(True)
plt.show()
QPSK Error Performance
This section analyzes the error performance of QPSK modulation.
# Error performance of QPSK
N = 500000
EbN0dB_list = np.arange(0, 20)
BER = []
for i in range(len(EbN0dB_list)):
EbN0dB = EbN0dB_list[i]
EbN0 = 10**(EbN0dB/10) # DB TO LINEAR CONVERSION
x = np.random.rand(N) >= 0.5 # BOOLEAN GENERATION
x_str = [str(int(i)) for i in x] # COVERSTION OF BOOLEAN TO STRING VIA INTEGER
x_str = "".join(x_str)
message = [x_str[2*i : 2*(i+1)] for i in range(int(len(x)/2))] # BIT STREAM (Splits the binary string into pairs of bits, forming the message.)
noise = 1/np.sqrt(2 * EbN0) # Standard deviation calculation of gaussian noise
channel = x + np.random.randn(N) * noise
received_x = channel >= 0.5 # Decoding
xReceived_str = [str(int(i)) for i in received_x]
xReceived_str = "".join(xReceived_str)
messageReceived = [xReceived_str[2*i : 2*(i+1)] for i in range(int(len(x)/2))]
message = np.array(message)
messageReceived = np.array(messageReceived)
errors = (message != messageReceived).sum()
BER.append(errors/N)
# print(BER)
plt.plot(EbN0dB_list, BER, "-", EbN0dB_list, BER, "go")
plt.xscale('linear')
plt.yscale('log')
plt.grid()
plt.xlabel("EbN0 in dB")
plt.ylabel("BER")
plt.title("BER in QPSK")
plt.show()