Essential Trigonometric Identities and Formulas
Classified in Mathematics
Written on in English with a size of 4.8 KB
Pythagorean Identities:
sin (a + b) = sin(a) · cos(b) + cos(a) · sin(b) cos (a + b) = cos(a) · cos(b) - sin(a) · sin(b) tan (a + b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b)) sin(2a) = 2 · sin(a) · cos(a) cos(2a) = cos2(a) - sin2(a) tan(2a) = 2tan(a) / (1 - tan2(a)) sin(a / 2) = ±√((1 - cos(a)) / 2) cos(a / 2) = ±√((1 + cos(a)) / 2) tan(a / 2) = ±√((1 - cos(a)) / (1 + cos(a))) sin(a)sin(b) = 2sin((a + b) / 2) · cos((a - b) / 2) sin(a) - sin(b) = 2cos((a + b) / 2) · sin((a - b) / 2) cos(a) + cos(b) = 2cos((a + b) / 2) · cos((a - b) / 2) cos(a) - cos(b) = -2sin((a + b) / 2) · sin((a - b) / 2) |
Basic Trigonometric Identities:
sin2(x) + cos2(x) = 1 1 + tan2(x) = sec2(x) 1 + cot2(x) = csc2(x) tan(x) = sin(x) / cos( |
---|